اثرات بایوچارهای طبیعی و کمپوست زبالۀ شهری بر پارامترهای هیدرولیکی خاک ماسه‌بادی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مدیریت مناطق بیابانی، دانشکدۀ منابع طبیعی، دانشگاه تهران

2 استادیار دانشکدۀ منابع طبیعی، دانشگاه تهران

3 کارشناس مسئول دفتر امور بیابان، سازمان جنگل‌ها، مراتع و آبخیزداری کشور

چکیده

هدایت هیدرولیکی اشباع یکی از مهم‌ترین ویژگی‌های فیزیکی خاک است که در مدل‌سازی حرکت آب، انتقال املاح و آلاینده‌ها در محیط­های متخلخل، تعیین­، مقدار و سرعت نفوذ، طراحی زهکش‌ها و دیگر فرآیندهای هیدرولوژیکی کاربرد زیادی دارد. در این مطالعه با افزایش سطوح مختلف ( 1، 3 و 5 درصد) بایوچار طبیعی و بایوچار کمپوست زبالۀ شهری به خاک جمعاً 16 نوع خاک تهیه شد و اثر افزایش این مواد بر ضریب هدایت هیدرولیکی اشباع بررسی شد. برای این منظور هدایت هیدرولیکی خاک­ها در آزمایشگاه و به روش بار ثابت اندازه­گیری شد. سپس مدل‌سازی منحنی مشخصۀ رطوبتی (SMC) با استفاده از مدل ون­گنوختن-معلم (VGM) برای همۀ خاک­ها انجام گردید و پارامترهای این مدل شامل رطوبت باقی‌مانده ( )، رطوبت اشباع ( )، پارامترهای α، m، n و نیز هدایت هیدرولیکی اشباع با استفاده از داده­های زودیافت خاک نظیر درصد ذرات خاک (شن، سیلت، و رس)، چگالی ظاهری و مقادیر ظرفیت زراعی و پژمردگی دائـم با نرم­افـزارهای ROSETTA و RETC از طریق مدل‌سازی معکوس تعیین شـد. نتایج نشان داد که افزایش بایوچار کمپوست زباله و بایوچار طبیعی سبب کاهش هدایت هیدرولیکی آب در خاک گردید و تیمار11 که دارای خاک 5+ درصد بایوچار طبیعی 1+ درصد بایوچار زباله شهری بوده با 64 درصد و بعد از آن تیمار 13 با کاهش 61 درصدی بیشترین کاهش Ks شده است. بیشترین و کمترین مقدار Ks مربوط به تیمارهای 1 و 11 به ترتیب برابر 9/707 و 8/254 سانتیمتر بر روز بود. همچنین اثر تیمارهای مختلف بر همۀ پارامترهای مدل VGM ((θr , θs, m , n , α معنی­دار بود و در اکثر تیمارهای به‌کاررفته با افزایش درصدهای مصرفی بایوچار در خاک پارامترهای θr، n و m افزایش و پارامترهای θs، α و Ks کاهش یافتند.

کلیدواژه‌ها


[1] Abbasi, F. (2017). Advanced Soil Physics, 4th Edition, University of Tehran press, 320pp.
[2] Al-Darby, A.M. 1996. The hydraulic properties of a sandy soil treated with gelforming soil conditioner. Soil Technology, 9: 15-28.
[3] Alizadeh, A. (2013). Soil Physics, 6th Edition, University of Imam Reza, 568pp.
[4] Asghari, Sh., Abbasi, F., Neyshabouri, M.R., Oustsan, Sh, and Aliasgharzad, A. (2011). Effects of Four Organic Soil Conditioners on Some Hydraulic and Solute Transport Parameters in a Sandy Loam Soil. Journal of Water and Soil Conservation, Vol. 18(2), 177-194.
[5] Basso, A. S. 2012. Effect of fast pyrolysis biochar on physical and chemical properties of a sandy soil. Master’s Thesis, Iowa State University, Ames, 69 pp.
[6] Bremner, J., Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P., Sumner, M. (1996). Nitrogen-total. Methods of soil analysis. Part 3-Chemical methods. 1085-1121.
[7] Downie, A., & Van Zwieten, L. (2013). Biochar: A Coproduct to Bioenergy from Slow-Pyrolysis Technology Advanced Biofuels and Bioproducts (pp. 97-117): Springer.
[8] Downie, A., Crosky, A. and Munroe, P. 2009. Physical properties of biochar. In Lehmann, J., and S. Joseph (eds) Biochar for Environmental Management - Science and Technology. p. 13-32.
[9] Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis1. Methods of soil analysis: Part 1—Physical and mineralogical methods (methodsofsoilan1), 383-411.
[10] Ghazan Shahi, j. (1995). Soil Physics. 1th Edition, University of Tehran press, 467pp.
[11] Glaser, B., Lehmann, J. and Zech, W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and Fertility of Soils, 35: 219-230
[12] Ibrahim, A., Usman, A. R. A., Al-Wabel, M. I., Nadeem, M., Ok, Y. S., & Al-Omran, A. (2017). Effects of conocarpus biochar on hydraulic properties of calcareous sandy soil: influence of particle size and application depth. Archives of Agronomy and Soil Science, 63(2), 185-197.‏
[13] Karimian, N., Ghorbani Dashtaki, Sh., and Tabatabaei, H. (2016). Hydraulic properties under different water repellency levels, Journal of Water and Soil Resources conservation, vol 6(1), 75-86.Klute, A. (1986) Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods. Madison,Wisconsin, USA.
[14] Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: science, technology and implementation: Routledge.
[15] Loeppert, R.H., and Suarez. L. 1996. Carbonate and gypsum. P 437-474. In: Sparks, D.L., A.L. Page, P.A. Helmke and R.H. Loeppert, (Eds.), Methods of soil analysis, Part 3, Soil Science Society of America, Madison, WI.
[16] Lu, S. G., Sun, F. F., & Zong, Y. T. (2014). Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena, 114, 37-44.‏
[17] Major, J., Lehmann, J., Rondon, M., & Goodale, C. (2010). Fate of soil‐applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 16(4), 1366-1379.
[18] Nelson, D., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter1. Methods of soil analysis. Part 2. Chemical and microbiological properties (methodsofsoilan2), 539-579.
[19] Nyamangara, J., Gotosa, J., and Mpofu, S.E. 2001. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil Till. Res. 62: 157-162.
[20] Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture; Washington.‏ Rahimi, H. ().Soil Mechanics, 3th Edition, Danesh and Fan of press, 622pp.
[21] Razzaghi, F., and Rezaie, N. (2017). Effects of different levels of biochar on soil physical properties with different textures, Journal of Water and Soil Resources conservation. Vol 7(1), 75-88.
[22] Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis Part 3—Chemical Methods, (methodsofsoilan3), 417-435.‏
[23] Sadeghian, N., Neyshabouri, M.R., Jafarzadeh, A.A., and Tourchi, M. 2006. Effects of three soil conditioners on the physical properties of soil surface layer. Iranian J. Agric. Sci. 37: 2. 351-341. (In Persian)
[24] Stibinger, J. (2014). Examples of Determining the Hydraulic Conductivity of Soils: Theory and Applications of Selected Basic Methods: University Handbook on Soil Hydraulics. Jan Evangelista Purkyně University, Faculty of the Environment.
[25] Thomas, G. W. (1996). Soil pH and soil acidity. Methods of Soil Analysis Part 3—Chemical Methods, (methodsofsoilan3), 475-490.‏
[26] Trifunovic, B., Gonzales, H. B., Ravi, S., Sharratt, B. S., & Mohanty, S. K. (2018). Dynamic effects of biochar concentration and particle size on hydraulic properties of sand. Land Degradation & Development.‏
[27] Uzoma, K.C., Inoue, M. Andry, H. Fujimaki, H. Zahoor, A. and Nishihara, E. 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil use and Management, 27: 205-212.
[28] Van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal, 44: 892-898
[29] Vervoort, R.W., Radcliffe, D.E., and West, L.T. 1999. Soil structure development and preferential solute flow. Water Resources Research, 35: 913-928.
[30] Wang, T. Y., Lin, L. L., & Tsai, Y. Z. (2017). Effect of Gravel Content on Saturated Hydraulic Conductivity in Sand. In Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls (pp. 163-169). Springer, Tokyo.
[31] Wong, J. T. F., Chen, Z., Chen, X., Ng, C. W. W., & Wong, M. H. (2017). Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material. Journal of soils and sediments, 17(3), 590-598.‏
[32] Wong, J. T. F., Chen, Z., Wong, A. Y. Y., Ng, C. W. W., & Wong, M. H. (2018). Effects of biochar on hydraulic conductivity of compacted kaolin clay. Environmental Pollution, 234, 468-472.‏